Kryss-produkt
$\vec{w} = \vec{u} \times \vec{v}$
$|\vec{w}|=|\vec{u}||\vec{v}|\sin \alpha$
Mer om kryss-produkt
Høyrehåndsregel
$
\begin{align*}
\red{\mathbf{i}} \times \green{\mathbf{j}} &= \blue{\mathbf{k}}\\
\blue{\mathbf{k}} \times \red{\mathbf{i}} &= \green{\mathbf{j}}\\
\green{\mathbf{j}} \times \blue{\mathbf{k}} &= \red{\mathbf{i}} \\
\red{{\mathbf{i}}} \times \red{\mathbf{i}} &= 0 \\
\green{{\mathbf{j}}} \times \green{\mathbf{j}} &= 0 \\
\blue{{\mathbf{k}}} \times \blue{\mathbf{k}} &= 0
\end{align*}
$
Utledning av kryss-produkt
$
\vec{u} \times \vec{v} = (\red{u_x \mathbf{i}} + \green{u_y \mathbf{j}} +\blue{u_z \mathbf{k}}) \times (\red{v_x \mathbf{i}} + \green{v_y \mathbf{j}} +\blue{v_z \mathbf{k}})
$
$
\require{cancel}
\begin{split}
&= \red{u_x v_x \cancel{\mathbf{i} \times \mathbf{i}}} + \red{u_x} \green{v_y} {\red{\mathbf{i}} \times \green{\mathbf{j}}} + \red{u_x} \blue{v_z} \red{\mathbf{i}} \times \blue{\mathbf{k}} \\
&+ \green{u_y} \red{v_x} \green{\mathbf{j}} \times \red{\mathbf{i}} + \green{u_y v_y \cancel{\mathbf{j} \times \mathbf{j}}} + \green{u_y} \blue{v_z} \green{\mathbf{j}} \times \blue{\mathbf{k}} \\
&+ \blue{u_z} \red{v_x} \blue{\mathbf{k}} \times \red{\mathbf{i}} + \blue{u_z} \green{v_y} \blue{\mathbf{k}} \times \green{\mathbf{j}} + \blue{u_z v_z \cancel{\mathbf{k} \times \mathbf{k}}} \\
\end{split}
$
Bruker at kryss-produktet er distribuert ved addisjon
$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
$
\require{cancel}
\begin{split}
&= \red{u_x v_x \cancel{\mathbf{i} \times \mathbf{i}}} + \red{u_x} \green{v_y} {\red{\mathbf{i}} \times \green{\mathbf{j}}} + \red{u_x} \blue{v_z} \red{\mathbf{i}} \times \blue{\mathbf{k}} \\
&+ \green{u_y} \red{v_x} \green{\mathbf{j}} \times \red{\mathbf{i}} + \green{u_y v_y \cancel{\mathbf{j} \times \mathbf{j}}} + \green{u_y} \blue{v_z} \boxed{\green{\mathbf{j}} \times \blue{\mathbf{k}}} \\
&+ \blue{u_z} \red{v_x} \blue{\mathbf{k}} \times \red{\mathbf{i}} + \blue{u_z} \green{v_y} \boxed{\blue{\mathbf{k}} \times \green{\mathbf{j}}} + \blue{u_z v_z \cancel{\mathbf{k} \times \mathbf{k}}} \\
\end{split}
$
$
\green{\mathbf{j}} \times \blue{\mathbf{k}} = \red{\mathbf{i}}, \quad \blue{\mathbf{k}} \times \green{\mathbf{j}} = -\red{\mathbf{i}}
$
$
\rightarrow (\green{u_y} \blue{v_z} - \blue{u_z} \green{v_y}) \, \red{\mathbf{i}}
$
$
\require{cancel}
\begin{split}
&= \red{u_x v_x \cancel{\mathbf{i} \times \mathbf{i}}} + \red{u_x} \green{v_y} {\red{\mathbf{i}} \times \green{\mathbf{j}}} + \red{u_x} \blue{v_z} \boxed{\red{\mathbf{i}} \times \blue{\mathbf{k}}} \\
&+ \green{u_y} \red{v_x} \green{\mathbf{j}} \times \red{\mathbf{i}} + \green{u_y v_y \cancel{\mathbf{j} \times \mathbf{j}}} + \green{u_y} \blue{v_z} {\green{\mathbf{j}} \times \blue{\mathbf{k}}} \\
&+ \blue{u_z} \red{v_x} \boxed{\blue{\mathbf{k}} \times \red{\mathbf{i}}} + \blue{u_z} \green{v_y} {\blue{\mathbf{k}} \times \green{\mathbf{j}}} + \blue{u_z v_z \cancel{\mathbf{k} \times \mathbf{k}}} \\
\end{split}
$
$
\red{\mathbf{i}} \times \blue{\mathbf{k}} = \green{\mathbf{j}}, \quad \blue{\mathbf{k}} \times \red{\mathbf{i}} = -\green{\mathbf{j}}
$
$
\rightarrow (\red{u_x} \blue{v_z} - \blue{u_z} \red{v_x}) \, \green{\mathbf{j}}
$
$
\begin{split}
\vec{u} \times \vec{v} &= (\green{u_y} \blue{v_z} - \blue{u_z} \green{v_y})\, \red{\mathbf{i}} \\
&+ (\blue{u_z} \red{v_x} - \red{u_x}\blue{v_z} )\, \green{\mathbf{j}} \\
&+ (\red{u_x}\green{v_y} - \green{u_y \red{v_x}}) \, \blue{\mathbf{k}}
\end{split}
$
Huskeregel
Ta determinanten av følgende matrise
$
\begin{align*}
\vec{u} \times \vec{v} &= \begin{vmatrix} \red{\mathbf{i}} & \green{\mathbf{j}} & \blue{\mathbf{k}} \\
\red{u_x} & \green{u_y} & \blue{u_z} \\
\red{v_x} & \green{v_y} & \blue{v_z} \end{vmatrix} \\
&= (\green{u_y} \blue{v_z} - \blue{u_z} \green{v_y})\, \red{\mathbf{i}} \\
&+ (\blue{u_z} \red{v_x} - \red{u_x} \blue{v_z} )\, \green{\mathbf{j}} \\
&+ (\red{u_x} \green{v_y} - \green{u_y} \red{v_x})\, \blue{\mathbf{k}}
\end{align*}
$
Sammendrag av forrige slide
- To vektorer $\vec{u}$ og $\vec{v}$ i $\mathbb{R}^3$ spenner ut et plan
- Kryssproduktet gir en ny vektor $\vec{a}$ med retning normal til planet
$\vec{a} = \vec{u} \times \vec{v}$
- En enhetsvektor $\vec{n}_a$ med lengde 1 og samme retning som $\vec{a}$ skapes med
$\vec{n}_a = \frac{\vec{a}}{|\vec{a}|}$