Suggested solutions Poiseuille

Solutions written assignments Poiseuille

Problem 3-15 in White

Since the boundary conditions are independent of \(x\) we may assume a parallel shear solution of the form \(\boldsymbol{u} = (u(y), 0, 0)\), with \(\partial p / \partial x = 0\). The momentum equation reduces to

\[ 0 = \mu \nabla^2u + \rho g \sin \theta, \]

where \(\theta\) is the angle of the plate with the horizontal. The boundary conditions are \(u(0)=0\) and \(du/dx(h)=0\). Integrate twice to obtain

\[ u = -\frac{\rho g \sin \theta y^2}{2 \mu} + Ay + B \]

The boundary conditions are then used to find A and B. The first, \(u(0)=0\), gives us \(B=0\) and the second

\[\begin{split} \begin{aligned} \frac{\mathrm{d} u}{dy}(y=h) = 0 &= -\frac{\rho g \sin \theta h}{\mu} +A \\ A &= \frac{\rho g \sin \theta h}{\mu} \end{aligned} \end{split}\]

and thus the final velocity profile

\[ u(y) = \frac{\rho g \sin \theta y}{2 \mu}\left(2h - y\right) \]

The volumetric flow rate \(Q\) per unit width is found through

\[\begin{split} \begin{aligned} Q &= \int_0^h u(y) \mathrm{d}y \\ Q &= \frac{\rho g h^3 \sin \theta}{3 \mu} \end{aligned} \end{split}\]

Problem 3-16 in White

Assume negligible pressure gradient in \(z\)-direction since the film is thin and the pressure outside the film is constant atmospheric pressure. The momentum equation in \(z\)-direction reads

\[ \frac{\mu}{r}\frac{\mathrm{d} }{\mathrm{d}r}\left( r \frac{\mathrm{d} u}{\mathrm{d} r} \right) + \rho g = 0. \]

Integrate twice to obtain

\[ u(r) = -\frac{\rho g r^2}{4 \mu} + A \ln r + B. \]

The boundary conditions are no-slip at the wall and no shear at the free surface. The second one gives us

\[\begin{split} \begin{aligned} \frac{\mathrm{d} u}{\mathrm{d} r} (y=b) &= -\frac{\rho g b}{2 \mu} + \frac{A}{b} = 0 \\ A &= \frac{\rho g b^2}{2 \mu} \end{aligned} \end{split}\]

The no-slip boundary condition gives us

\[\begin{split} \begin{aligned} u(a) = 0 &= -\frac{\rho g a^2}{4 \mu} + \frac{\rho g b^2}{2 \mu} \ln a + B\\ B &= \frac{\rho g a^2}{4 \mu} - \frac{\rho g b^2}{2 \mu} \ln a, \end{aligned} \end{split}\]

which leads to the final expression for the velocity

\[ u(r) = \frac{\rho g}{4 \mu}\left(a^2 - r^2 \right) + \frac{\rho g b^2}{2 \mu} \ln \frac{r}{a} \]

The volumetric flow rate can be found through

\[\begin{split} \begin{aligned} Q &= 2 \pi \int_a^b u(r) r \mathrm{d}r \\ Q &= \ldots \end{aligned} \end{split}\]

Problem 3-17 in White

Like in problem 3-15 the velocity is given as

\[\begin{split} \begin{aligned} u_1 &= -\frac{\rho_1 g \sin \theta y^2}{2 \mu_1} + A_1y + B_1, \\ u_2 &= -\frac{\rho_2 g \sin \theta y^2}{2 \mu_2} + A_2y + B_2. \end{aligned} \end{split}\]

The boundary conditions are now

\[\begin{split} \begin{aligned} u_1(0) &= 0, \\ u_1(h_1) &= u_2(h_1), \\ \mu_1 \frac{\mathrm{d} u_1}{\mathrm{d} y}(h_1) &= \mu_2 \frac{\mathrm{d} u_2}{\mathrm{d} y}(h_1) \\ \frac{\mathrm{d} u_2}{\mathrm{d} y}(h_1+h_2) &= 0. \end{aligned} \end{split}\]

The first one gives \(B_1=0\). The remaining leads to three equations for three unknowns. They are:

\[\begin{split} \begin{aligned} -\frac{\rho_1 g \sin \theta h_1^2}{2 \mu_1} + A_1h_1 &= -\frac{\rho_2 g \sin \theta h_1^2}{2 \mu_2} + A_2h_1 + B_2, \\ -\frac{\rho_1 g \sin \theta h_1}{\mu_1} +A_1 &= -\frac{\rho_2 g \sin \theta h_1}{\mu_2} +A_2 \\ -\frac{\rho_2 g \sin \theta (h_1+h_2)}{\mu_2} + A_2 &= 0 \end{aligned} \end{split}\]

where \(A_2\) is given by the last equation. Inserting this into the previous gives us \(A_1\)

\[\begin{split} \begin{aligned} A_1 &= -\frac{\rho_2 g \sin \theta h_1}{\mu_2} + \frac{\rho_2 g \sin \theta (h_1+h_2)}{\mu_2} + \frac{\rho_1 g \sin \theta h_1}{\mu_1}\\ A_1 &= g \sin \theta \left(\frac{\rho_2 h_2}{\mu_2} + \frac{\rho_1 h_1}{\mu_1} \right) \end{aligned} \end{split}\]

And \(A_1\) and \(A_2\) inserted into the first gives us \(B_2\)

\[ B_2 = -\frac{\rho_1 g \sin \theta h_1^2}{2 \mu_1} + A_1 h_1 + \frac{\rho_2 g \sin \theta h_1^2}{2 \mu_2} - A_2 h_1 \]